Logs of arrhythmia episodes in patients with pacemakers are used to estimate the temporal progression of atrial arrhythmia. In order to attain an early detection, a stream of dates and episode lengths are fed to an array of detectors, each of which is responsive to a narrow range of arrhythmias. The outputs of these detectors are organized on a projection map, used by the specialist to assess the risk in the evolution of the patient. Each of the mentioned detectors is a recurrent LSTM network, that is in turn the discriminating element of a GAN that has been trained to generate temporal sequences of values of the degrees of truth that the arrhythmia episodes are not isolated.